Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev. bras. plantas med ; 17(2): 305-315, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-746133

ABSTRACT

ABSTRACT: The Casearia sylvestris Sw (Flacourtiaceae) is a shrub that occurs in forests of Southern Brazil; its leaves are widely used in folk medicine as a depurative, analgesic, anti-inflammatory and antiulcerogenic agent. The objective of this study was to perform the phytochemical description and to evaluate the pharmacological activities (antimicrobial, antifungal, antioxidant and toxicity) of the ethanolic extract (EE) of C. sylvestris Sw. In addition, we also evaluated the effect of the EE of C. sylvestris Sw on the glucose levels and lipid profile in blood serum of rats submitted to a model of streptozotocin-induced diabetes. Material and Methods: In vitro assay: the detection of chemical groups was done through chemical reactions with the development of color or precipitate and by chromatographic profile; the antioxidant activity was measured by the method of reduction of DPPH free radical (2,2-diphenyl-1-picrylhydrazyl); the Minimum Inhibitory Concentration was evaluated by the broth microdilution method, and the Minimum Bactericide Concentration and the Minimum Fungicide Concentration were performed in Petri dishes; the cytotoxic activity was measured by the Artemia salina test. In vivo assay: diabetic and non-diabetic rats were treated with EE of C. sylvestris Sw (300 mg/kg) for 45 days, and the glycaemia and lipid profile were analyzed. Results: The EE showed a Lethal Dose50 of 724.76 μg.mL-1 and important antioxidant, fungicide and fungistatic activities. The EE showed better antimicrobial activity regarding the microorganisms Staphylococcus aureus, Escherichia coli and Salmonella setubal. Conclusion: The EE of C. sylvestris Sw produces a significant decrease in triglycerides, total cholesterol and VLDL levels without any significant alteration in the glycaemia. The EE of C. sylvestris Sw presents antioxidant and antimicrobial activities and it exhibits a potent hypolipidemic effect.


RESUMO: Casearia sylvestris Sw (Flacourtiaceae) é uma planta comumente encontrada em florestas do sul do Brasil; suas folhas são amplamente utilizadas na medicina popular como depurativa, analgésica, anti-inflamatória e anti ulcerogênica. O objetivo deste estudo foi apresentar uma descrição fitoquímica e da atividade farmacológica (antimicrobiana, antifúngica, antioxidante e toxicidade) do extrato etanólico (EE) da C. Sylvestris Sw. Adicionalmente, procurou-se avaliar o efeito do EE da C. Sylvestris Sw sobre os níveis séricos de glicose e perfil lipídico de ratos submetidos a um modelo de diabetes induzida por estreptozotocina. A detecção de grupos químicos foi realizada por reações químicas de coloração ou precipitação, e também por cromatografia; a atividade antioxidante foi mensurada pelo método de redução do DPPH (2,2-difenil-1-picril-hidrazil); a concentração mínima inibitória foi realizada pela técnica de micro-diluição, e concentração mínima bactericida e concentração mínima fungicida foram realizadas em placa de Petri; enquanto a atividade citotóxica foi conduzida pelo teste da Artemia salina. Nos ensaios in vivo, ratos diabéticos e não-diabéticos foram tratado com EE da C. Sylvestris Sw (300mg/kg) por 45 dias, e os níveis glicêmico e perfil lipídico foram medidos. A dose Letal50 do EE foi de 724.76 μg.mL-1; mostrando importante atividades antioxidante, fungicida e fungistática e melhor atividade antimicrobiana contra Staphylococcus aureus, Escherichia coli e Salmonella setubal. O EE da C. Sylvestris Sw promoveu diminuição significativa nos níveis de triglicerídeos, colesterol total e VLDL; porém sem efeito significativo nos níveis glicêmicos. O EE da C. Sylvestris Sw, além de apresentar atividade antioxidante e antimicrobiana; possui também potente efeito hipolipidêmico.


Subject(s)
Animals , Male , Rats , In Vitro Techniques/instrumentation , /anatomy & histology , Anti-Infective Agents/analysis , Hypolipidemic Agents/pharmacology , Antioxidants/analysis , Blood Glucose/metabolism , Diabetes Mellitus/pathology
2.
Braz. j. med. biol. res ; 37(2): 185-192, Feb. 2004. tab
Article in English | LILACS | ID: lil-354177

ABSTRACT

Exposure to stress induces a cluster of physiological and behavioral changes in an effort to maintain the homeostasis of the organism. Long-term exposure to stress, however, has detrimental effects on several cell functions such as the impairment of antioxidant defenses leading to oxidative damage. Oxidative stress is a central feature of many diseases. The lungs are particularly susceptible to lesions by free radicals and pulmonary antioxidant defenses are extensively distributed and include both enzymatic and non-enzymatic systems. The aim of the present study was to determine lipid peroxidation and total radical-trapping potential (TRAP) changes in lungs of rats submitted to different models of chronic stress. Adult male Wistar rats weighing 180-230 g were submitted to different stressors (variable stress, N = 7) or repeated restraint stress for 15 (N = 10) or 40 days (N = 6) and compared to control groups (N = 10 each). Lipid peroxidation levels were assessed by thiobarbituric acid reactive substances (TBARS), and TRAP was measured by the decrease in luminescence using the 2-2'-azo-bis(2-amidinopropane)-luminol system. Chronic variable stress induced a 51 percent increase in oxidative stress in lungs (control group: 0.037 ± 0.002; variable stress: 0.056 ± 0.007, P < 0.01). No difference in TBARS was observed after chronic restraint stress, but a significant 57 percent increase in TRAP was presented by the group repeatedly restrained for 15 days (control group: 2.48 ± 0.42; stressed: 3.65 ± 0.16, P < 0.05). We conclude that different stressors induce different effects on the oxidative status of the organism.


Subject(s)
Animals , Male , Rats , Lipid Peroxidation , Lung , Oxidative Stress , Stress, Physiological , Thiobarbituric Acid Reactive Substances , Disease Models, Animal , Free Radicals , Rats, Wistar , Restraint, Physical
3.
Braz. j. med. biol. res ; 34(2): 241-244, Feb. 2001.
Article in English | LILACS | ID: lil-281602

ABSTRACT

There is extensive evidence that acute stress induces an analgesic response in rats. On the other hand, repeatedly stressed animals may present the opposite effect, i.e., hyperalgesia. Furthermore, exposure to novelty is known to induce antinociception. The effects of repeated restraint stress on nociception after exposure to novelty, as measured by the tail-flick latency (TFL), were studied in adult male rats. The animals were stressed by restraint 1 h daily, 5 days a week for 40 days. The control group was not submitted to restraint. Nociception was assessed with a tail-flick apparatus. After being familiarized with the TFL apparatus, each group was subdivided into two other groups, i.e., with or without novelty. Animals were subjected to the TFL measurement twice. For the animals exposed to novelty, the first TFL measurement was made immediately before, and the second 2 min after a 2-min exposure to a new environment. While the control group presented an increased TFL after exposure to a novel environment, chronically stressed animals did not show this effect. These results suggest that repeated restraint stress induces an alteration in the nociceptive response, perhaps as a result of an alteration in endogenous opioids in these animals


Subject(s)
Animals , Male , Rats , Analgesia/psychology , Exploratory Behavior/physiology , Stress, Psychological/psychology , Analysis of Variance , Case-Control Studies , Pain Measurement , Rats, Wistar , Reaction Time , Restraint, Physical/psychology , Stress, Psychological/physiopathology , Tail/physiology
4.
Braz. j. med. biol. res ; 34(1): 111-6, Jan. 2001. tab, graf
Article in English | LILACS | ID: lil-277063

ABSTRACT

It has been suggested that glucocorticoids released during stress might impair neuronal function by decreasing glucose uptake by hippocampal neurons. Previous work has demonstrated that glucose uptake is reduced in hippocampal and cerebral cortex slices 24 h after exposure to acute stress, while no effect was observed after repeated stress. Here, we report the effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slices and on plasma glucose and corticosterone levels. Male adult Wistar rats were exposed to restraint 1 h/day for 50 days in the chronic model. In the acute model there was a single exposure. Immediately or 24 h after stress, the animals were sacrificed and the hippocampus and cerebral cortex were dissected, sliced, and incubated with Krebs buffer, pH 7.4, containing 5 mM glucose and 0.2 æCi D-[U-14C] glucose. CO2 production from glucose was estimated. Trunk blood was also collected, and both corticosterone and glucose were measured. The results showed that corticosterone levels after exposure to acute restraint were increased, but the increase was smaller when the animals were submitted to repeated stress. Blood glucose levels increased after both acute and repeated stress. However, glucose utilization, measured as CO2 production in hippocampal and cerebral cortex slices, was the same in stressed and control groups under conditions of both acute and chronic stress. We conclude that, although stress may induce a decrease in glucose uptake, this effect is not sufficient to affect the energy metabolism of these cells


Subject(s)
Animals , Male , Rats , Carbon Dioxide/metabolism , Cerebral Cortex/metabolism , Glucose/metabolism , Hippocampus/metabolism , Stress, Physiological/metabolism , Acute Disease , Blood Glucose/analysis , Chronic Disease , Corticosterone/blood , Oxidation-Reduction , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL